

HETEROSIS STUDIES FOR YIELD AND YIELD ATTRIBUTING CHARACTERS IN CHILI (CAPSISUM ANNUUM L.) OVER ENVIRONMENTS

G. Kranthi Rekha*, L. Naram Naidu¹, C. Venkata Ramana², K. Umajyothi, M. Paratpararao³ and K. Sasikala⁴

Department of Vegetable Science, HC & RI, Dr. Y.S.R.H.U., V.R. Gudem - 534 101 (A.P.), India.
^{1&2}HRS, Lam Farm, Guntur, Dr. Y.S.R. Horticultural University - 522 034 (A.P.), India.
³Department of Vegetable science, HC & RI, Dr. Y.S.R.H.U., V.R.Gudem - 534 101 (A.P.), India.
Department of Genetics & Plant Breeding, HC & RI, Dr. Y.S.R.H.U., V.R.Gudem - 534 101 (A.P.), India.
⁴Department of Agronomy, HC & RI, Dr. Y.S.R.H.U., V.R. Gudem - 534 101 (A.P.), India.

Abstract

Heterosis for dry fruit yield per plant and related characters in chilli was studied in line \times tester fashion involving five lines and 6 testers. The hybrids differed significantly for all the characters studied, as evident from their highly significant mean square values. Mean squares due to hybrids \times environments were significant for most of the characters which indicated more sensitivity of hybrids to environments. The hybrids LCA 704 x LCA 315, LCA 764 x LCA 315, LCA 712 x LCA 703, LCA 764 x LCA 763 and LCA 710 x LCA 706 exhibited higher magnitude of heterobeltiosis and standard heterosis for dry fruit yield per plant and yield contributing characters. These promising five hybrids could be further evaluated in yield trials over the locations and seasons before recommending for commercial release.

Key words : Chilli, heterosis, yield and environments.

Introduction

Chilli has its unique place in human diet as a spice and vegetable component. It is also a valuable foreign exchange earner. Though, the heterosis has been commercially exploited in several vegetable crops. Very few commercial hybrids are available in chilli. The greater extent of out crossing and large number of viable seeds produced by crossed chilli fruit facilitate for development of commercial hybrids. Therefore, an attempt was made to identify suitable cross combinations from different parents for commercial exploitation of heterosis.

Materials and Methods

The experimental materials were comprised of 11 parents (6 lines and 5 testers) and their 30 F_1s and two checks (Indam-5 and Tejaswini). The parental lines and all the F_1s were evaluated in RBD with three replications during kharif season of 2013-14 at HRS, Lam, HC&RI, V.R.Gudem and HRS, Darsi, AP. Experimental units were

consisting of length of 4 m row with 75×30 cm spacing. The observations were recorded on five competitive randomly selected plants for several characters *viz.*, plant height, plant spread, number of primary branches, number of secondary branches, days to 50% flowering, per cent fruit set, days to first picking, no.of fruits per plant, fruit length, fruit diameter, average dry fruit weight, dry fruit yield per plant, dry fruit recovery, no. of seeds per fruit and seed weight. Heterosis over mid parent, better parent and superiority over checks were calculated as per the standard procedure (Turner (1953) and Hayes *et al.* (1956).

Results and Discussion

Pooled analysis of variance for experimental design revealed significant differences among locations for all the characters studied (table 1). Significant differences for replications \times locations were not recorded except for primary branches per plant. The differences among the parents and hybrids were observed to be significant for all the characters studied. The differences among the

^{*}Author for correspondence: E-mail:kranthi.mscoleri@gmail.com

parents vs. hybrids were recorded to be significant except for plant spread, per cent fruit set and fruits per plant. Partitioning of genotypes into lines, testers and lines x testers revealed that the variance differences among lines and testers were observed to be significant for all the characters studied. The effects due to lines x testers were significant for all the traits studied except for days to 50 per cent flowering, fruit diameter, fruit length, average dry fruit weight and number of seeds per fruit. Interaction effects of (parents vs. hybrids) × locations were significant for all the characters except fruit diameter.

Significant variances for parents \times locations interaction were per cent fruit set, fruits per plant, dry fruit yield per plant and dry fruit recovery. The effects due to hybrids \times locations were significant for all the characters except days to first picking and dry fruit recovery. Further partitioning of hybrids \times locations indicated that the interaction of lines \times locations was significant for per cent fruit set, no. of fruits per plant, dry fruit yield per plant and dry fruit recovery while that of testers \times locations for per cent fruit set, fruits per plant and dry fruit recovery. Interaction effects of lines x testers x locations were significant for per cent fruit set, dry fruit yield and dry fruit recovery.

This indicates the existence of wide variability in the material studied and there is a good scope for identifying promising parents and hybrid combinations, and improving the yield through its components. These results are in conformity with the findings of Prasath and Ponnuswami (2008) and Payakhapaab *et al.* (2012).

In respect of *per se* performance of parents, LCA 764 and LCA 704 were found to be superior for dry fruit yield per plant and for most of the yield contributing characters (tables 2 and 3). Among the hybrids, LCA 704 × LCA 315, LCA 704 × LCA 703, LCA 764 × LCA 315, LCA 704 × G4 and LCA 712 × LCA 703 had high per se performance for dry fruit yield per plant and other important yield contributing characters.

Mackey (1976) described genetic principles of expression of heterosis superior to the better parent, which may result from one or two of the following situations: (i) the accumulated action of favourable dominant or semidominant genes dispersed amongst two parents *i.e.* dominance; (ii) the complementary interaction of additive dominant on recessive genes at different loci i.e. nonallelic interaction or epistasis; (iii) favourable interaction between two alleles at the same locus *i.e.* intra locus or inter allelic interactions referred to as over dominance. It will be possible to recover homozygous lines as good as heterotic hybrids if either or both of the first two situations are the cause of heterosis, although the case with which such lines can be recovered will depend on linkage relationship of the genes involved and the ability to identify the recombinants as and when they arise. This will be particularly difficult with close linkage and when heterosis is expressed by a slight improvement in each of main yield components. If the heterosis is due to inter allelic interactions of dominant types, it is not possible to fix such heterosis in homozygous condition in subsequent generations. The superiority of hybrids, particularly over better parent, is more useful in determining the feasibility of commercial exploitation of heterosis and also identifying the parental combinations capable of producing the highest level of transgressive segregants. Investigation on degree of heterosis is, however, important as it may be of value in deciding the directions of future breeding programme. Kaladee (1988) pointed out that overdominance or heterosis of hybrids was due to the heterozygosity in self pollinated crops.

The range of heterosis, number of desirable significant heterotic crosses and best heterotic crosses over mid, better parent and standard variety for 15 traits are presented in table 4. Heterotic effects in negative direction are desirable for days to 50% flowering and days to first picking. Hybrids LCA 718 × LCA 763 (-19.87%) and LCA 704 × LCA 703 (-19.45%) exhibited significant and the highest negative heterobeltiosis (HB) and standard heterosis (SH) respectively for days to 50% flowering. For days to first picking, the hybrid LCA $704 \times G4$ and LCA 764 \times LCA 763 showed significant and highest negative HB and SH, respectively. The cross LCA 704 \times LCA 315 exhibited maximum significant SH for dry fruit yield per plant (55.42%), average dry fruit weight (52.72%), fruit length (40.43%), number of seeds per fruit (34.38%), seed weight (25.77%) and plant height (19.86%) and the hybrid LCA710 \times LCA 703 expressed significant heterosis over better parent for dry fruit yield per plant (64.77%). The above results are in agreement with the findings of Prasath and Ponnuswami (2008), Choudhary et al. (2013), Hasanuzzaman et al. (2013) and Mendes et al. (2014) who observed high heterotic effects in positive direction in chilli.

The cross LCA 764 × LCA 706 exhibited greater magnitude of standard heterosis for plant spread and per cent fruit set. The cross LCA 704 × LCA 703 flowered earlier and has highest number of fruits per plant over the best check Tejaswini. The crosses LCA 764 × LCA 763 and LCA 764 × LCA 315 showed highest heterotic effects for number of primary branches per plant and dry fruit weight respectively. For fruit diameter, the hybrid LCA 704 × LCA 763 expressed highest standard heterosis

`									
	1	(cm)	r taut spreau (cm)	branches/plant	secondary branches/plant	flowering	ruur ser (%)	Days uo first picking	per plant
Replications	2.00	7.77	32.48	0.14	0.34	13.08*	36.41	57.23**	2174.63
Locations	2.00	13590.84^{**}	37088.52**	10.82^{**}	92.21**	90.89**	2150.57**	90.89**	1032572.63**
Rep x Locations	4.00	27.70	26.65	0.66^{*}	1.24	0.91	22.23	0.96	983.47
Treatments	40.00	748.23**	1786.61^{**}	1.69^{**}	9.61**	56.22**	432.71^{**}	412.02**	30040.14^{**}
Parents	10.00	1007.98^{**}	2448.06^{**}	3.38**	20.71^{**}	50.98**	316.90^{**}	584.87**	26466.02**
Lines	5.00	697.41**	2183.29^{**}	1.41^{**}	19.50^{**}	76.21**	278.96^{**}	404.08**	24114.53^{**}
Testers	4.00	1365.45**	3325.04**	2.43**	20.21^{**}	28.59**	257.23**	363.72**	11663.24^{**}
Line x Tester	1.00	1130.91^{**}	263.99*	17.04^{**}	28.72**	14.43	745.30**	2373.41**	97434.65**
Hybrids	29.00	172.40^{**}	175.30^{**}	0.76**	3.91^{**}	57.89**	486.76^{**}	365.24**	32177.40**
Parents vs hybrids	1.00	14849.72^{**}	41900.44	11.41^{**}	63.80^{**}	60.18^{**}	23.34	40.22*	3800.72
Parents x locations	20.00	4.13	4.18	0.07	0.72	2.28	127.63^{**}	2.28	15160.42**
Lines x location	10.00	4.62	2.23	0.09	0.52	2.43	161.48^{**}	2.43	21527.49**
Testers x locations	8.00	4.06	5.56	0.07	0.82	2.57	95.89**	2.57	10276.57^{**}
(Lines x Testers) x locations	2.00	1.98	8.38	0.01	1.40	0.35	85.41*	0.35	2860.45
(Parents vs. hybrids) x locations	2.00	4755.30**	14053.77**	6.89**	26.37**	26.39**	1136.94^{**}	26.39*	176706.48^{**}
Hybrids x locations	58.00	122.14^{**}	160.37^{**}	0.74^{**}	5.11^{**}	9.46**	146.17^{**}	9.46	10014.29^{**}
Error	240.00	28.00	43.43	0.21	0.96	4.18	23.73	8.58	1210.79
Table 1 contd									
	Df	Fruit length	Fruit diame	ter Average o	lry Dry	fruit Dr	y fruit	No. of seeds	Seed weight
		(cm)	(cm)	fruit weigh	t (g) yield (g	/plant) reco	very (%)	per fruit	(g/1000 seed)
Replications	2.00	1.77^{**}	0.022	0.034	120	66.	7.85	92.12	0.774
Locations	2.00	9.53**	0.076**	0.432*:	227979).58** 95	5.65**	5631.15**	119.334**
Rep x Locations	4.00	0.30	0.010	0.011	211	.04 5	4.32*	16.66	0.312
Treatments	40.00	5.89**	0.054**	0.144*:	• 13569	.71** 10	8.69**	971.38**	3.689**
Parents	10.00	8.83**	0.069**	0.253*:	18384	.38** 26	8.82**	1400.48^{**}	5.833**
Lines	5.00	1.39^{**}	0.087**	0.166*	20034	.45** 20	0.10**	2025.48**	6.536**
Testers	4.00	20.15^{**}	0.063**	0.421*:	11028	.67** 14	5.24**	969.05**	5.090**
Line x Tester	1.00	0.80	0.001	0.020	39556	.88** 11(12.72**	1.15	5.288**
Hybrids	29.00	4.32**	0.043**	0.095**	12234	.75** 43	**//	535.17**	2.644^{**}
Parents vs hybrids	1.00	21.96^{**}	0.237**	0.457**	4136.	78** 39	0.21**	9330.63**	12.568**
Parents x locations	20.00	0.08	0.002	0.006	3097.	61** 20	2.33**	4.22	0.063
Lines x location	10.00	0.03	0.002	0.005	4061.	23** 22	3.71**	6.21	0.104
Testers x locations	8.00	0.11	0.002	0.008	211	.30 17	5.67**	2.51	0.027
(Lines x Testers) x locations	2.00	0.19	0.003	0000	9824.	76** 20	2.14**	1.11	0.005
(Parents vs. hybrids) x locations	2.00	3.04^{**}	0.019	0.285**	46100	.83** 85	9.87**	2030.27**	3.311^{**}
Hybrids x locations	58.00	0.87^{**}	0.012*	0.023*:	2694.	33**	3.81	242.21**	1.085^{**}
Error	240.00	0.33	0.008	0.011	333	.49	0.92	49.47	0.464

Table 1 : Analysis of variance for fifteen characters in chilli.

*, ** Significant at 5 and 1% level.

Table 2 : Mean perform	mance of parents a	und hybrids for varie	ous characters in cl	hilli (pooled over ei	nvironments).			
Cross combinations	Plant height (cm)	Plant spread (cm)	No. of primary branches/plant	No. of secondary branches/plant	Days to 50% flowering	Fruit set (%)	Days to first picking	No. of fruits per plant
Lines								
LCA 625	110.50	105.17	3.96	9.92	32.56	34.70	88.44	233.58
LCA 764	89.81	101.08	4.63	11.58	33.56	46.68	77.78	313.18
LCA 704	90.53	112.88	4.61	11.23	27.56	38.03	93.44	306.11
LCA710	86.24	70.84	3.88	8.50	29.78	30.17	88.89	217.93
LCA718	99.48	100.44	3.75	8.72	33.22	39.00	79.78	353.09
LCA712	97.53	113.08	4.47	11.87	27.00	40.58	78.00	306.11
Mean	95.04	100.55	4.35	10.72	30.39	37.53	84.61	246.78
Testers								
LCA315	84.83	74.68	2.81	7.71	31.33	24.38	71.67	256.29
LCA 706	109.08	110.00	3.42	9.29	29.11	32.60	85.89	265.89
LCA763	97.28	87.33	2.98	8.61	34.11	38.88	71.56	181.07
LCA 703	103.74	123.18	4.12	11.70	31.22	32.27	71.11	200.53
C4	117.42	91.32	3.59	8.80	31.11	35.29	72.56	222.87
Mean	102.47	97.30	3.38	9.22	31.38	32.68	74.56	225.33
Parental mean	98.76	98.93	3.86	10.32	30.88	35.11	79.58	236.05
Crosses								
LCA 625 xLCA 315	82.90	73.20	3.19	9.24	31.22	31.33	70.44	188.12
LCA 625 xLCA 706	88.39	82.08	3.36	9.24	27.22	33.44	85.44	247.24
LCA 625 xLCA 763	89.52	78.90	3.43	8.17	35.11	27.78	78.89	206.71
LCA 625 xLCA 703	89.43	81.77	2.89	9.31	27.44	34.56	87.56	250.24
LCA 625 x G4	89.82	75.75	3.42	8.19	30.11	43.00	77.22	205.60
LCA 764 x LCA 315	87.72	69.84	2.80	8.66	30.78	39.44	70.56	382.36
LCA 764 x LCA 706	90.50	83.03	3.36	9.68	28.00	49.44	73.00	276.11
LCA 764 x LCA 763	84.96	81.84	3.93	9.80	36.00	48.67	00.69	252.29
LCA 764 x LCA 703	81.63	75.04	3.58	10.03	29.00	40.78	74.33	232.60
							Tat	ole 2 continued

246

G. Kranthi Rekha et al.

Cross combinations	Plant height (cm)	Plant spread (cm)	No. of primary branches/plant	No. of secondary branches/plant	Days to 50% flowering	Fruit set (%)	Days to first picking	No. of fruits per plant
LCA 764 x G4	78.42	74.96	3.29	8.97	30.78	34.11	80.56	212.47
LCA 704 xLCA 315	74.70	72.62	3.34	8.84	32.00	39.00	72.33	379.18
LCA 704 xLCA 706	90.01	80.94	3.78	90.6	28.33	36.89	83.33	303.24
LCA 704 xLCA 763	82.30	74.85	3.70	9.56	30.22	47.33	77.78	275.07
LCA 704 xLCA 703	82.60	81.30	3.78	9.84	26.22	39.44	87.11	433.07
LCA 704 x G4	81.07	76.93	3.52	8.84	33.56	38.44	69.78	269.00
LCA710xLCA315	77.21	68.06	3.24	8.32	30.11	44.44	71.22	262.29
LCA710 xLCA 706	82.10	72.41	3.30	8.80	29.22	46.67	71.11	238.53
LCA710 xLCA 763	85.94	72.28	3.83	9.94	27.78	25.67	85.22	226.09
LCA710 xLCA 703	80.33	78.34	3.83	8.88	33.00	20.56	80.67	291.22
LCA710xG4	82.83	72.53	3.51	8.48	27.56	39.00	87.44	255.11
LCA718xLCA315	83.92	69.72	3.39	8.83	33.33	36.22	81.33	188.69
LCA718 xLCA 706	83.41	74.57	3.28	8.52	33.00	42.56	79.33	193.09
LCA718 xLCA 763	86.11	69.12	3.90	9.37	27.33	34.78	75.00	194.71
LCA718 xLCA 703	85.37	71.79	3.38	8.54	28.00	29.56	76.33	267.96
LCA718xG4	80.00	71.75	3.62	8.66	31.44	29.44	80.89	216.96
LCA712 xLCA 315	83.63	70.18	3.08	8.18	30.22	29.11	87.44	186.36
LCA712 xLCA 706	89.57	76.29	3.82	7.98	30.89	31.44	80.78	214.42
LCA712 xLCA 763	93.18	72.82	3.32	7.10	28.11	25.44	88.56	208.91
LCA712 xLCA 703	85.09	78.23	3.12	8.78	27.44	38.78	86.56	280.98
LCA712 x G4	80.86	70.06	3.26	8.39	28.00	30.33	86.00	234.93
Crosses Mean	84.45	75.04	3.44	8.87	30.05	36.26	79.17	252.45
Checks								
Indam-5	79.38	59.44	3.07	8.63	29.22	39.89	8 <i>L'LL</i>	140.91
Tejaswini	93.21	67.68	2.98	8.37	32.56	39.33	71.44	276.89
Grand Mean	88.19	80.66	3.52	9.09	30.32	36.27	79.15	252.28
C.D. 5%	7.93	11.31	0.54	1.26	2.11	7.02	2.70	64.07
S.E.	2.85	4.07	0.19	0.45	0.76	2.53	0.97	23.03

Table 2 continued....

Heterosis Studies for Yield and Yield Attributing Characters in Chili

Cross combinations	Fruit length (cm)	Fruit diameter (cm)	Average dry fruit weight (g)	Dry fruit yield per plant (g)	Dry fruit recovery (%)	No. of seeds per fruit	Seed weight (g/1000)
Lines						·	
LCA 625	9.22	0.97	0.92	219.00	23.39	44.47	8.31
LCA 764	8.64	1.06	1.04	240.11	21.37	54.28	9.09
LCA 704	9.36	0.99	1.13	199.44	20.76	65.67	8.95
LCA710	8.52	0.77	0.73	108.12	33.23	28.99	7.07
LCA718	9.14	0.96	0.97	197.84	24.53	66.09	7.19
LCA712	9.48	1.00	0.94	226.94	21.17	38.54	8.01
Mean	8.94	0.97	0.96	165.37	21.23	49.42	9.36
Testers							
LCA 315	10.49	1.06	1.10	159.89	30.83	64.52	8.58
LCA 706	8.15	0.89	0.87	207.44	32.33	54.44	6.99
LCA 763	10.47	1.05	1.31	171.07	35.63	46.36	6.96
LCA 703	7.29	0.89	0.80	113.71	30.56	37.41	7.36
G4	7.99	0.93	0.84	140.06	24.54	44.54	8.30
Mean	8.88	0.96	0.98	158.43	30.78	49.46	7.64
Parental Mean	8.91	0.97	0.97	161.90	26.00	49.44	8.50
Crosses							
LCA 625 x LCA 315	10.67	1.10	1.16	156.22	30.55	76.23	8.44
LCA 625 x LCA 706	8.99	0.96	1.03	190.16	35.32	59.83	8.23
LCA 625 x LCA 763	9.87	1.07	1.13	157.28	29.23	65.28	8.20
LCA 625 xLCA 703	9.22	1.05	1.03	183.36	31.13	60.25	8.96
LCA 625 x G4	9.86	0.99	1.04	139.39	32.02	66.72	8.60
LCA764 xLCA 315	10.31	1.11	1.24	262.94	28.83	72.43	9.21
LCA764 xLCA706	8.68	1.01	0.95	181.23	30.64	62.89	8.09
LCA764 xLCA763	9.93	1.06	1.15	206.72	29.47	60.86	9.00
LCA764 xLCA703	8.73	1.01	1.04	204.56	29.02	68.44	8.54

Table 3 : Mean performance of parents and hybrids for various characters in chilli (pooled over environments).

Table 3 continued....

Cross combinations	Fruit length (cm)	Fruit diameter (cm)	Average dry fruit weight (g)	Dry fruit yield per plant (g)	Dry fruit recovery (%)	No. of seeds per fruit	Seed weight (g/1000)
LCA764xG4	9.06	1.02	1.11	166.17	27.50	62.85	8.51
LCA704 xLCA 315	11.32	1.13	1.28	277.33	27.91	79.47	9.53
LCA704 xLCA706	8.88	0.96	0.96	209.22	27.81	62.62	8.13
LCA704 xLCA763	9.69	1.17	1.19	199.50	29.95	64.92	9.02
LCA704 xLCA703	8.88	1.06	1.10	263.56	30.53	55.57	8.44
LCA704xG4	9.23	1.12	1.08	237.22	28.66	66.94	9.19
LCA710xLCA315	9.63	0.96	1.06	184.44	33.07	54.22	8.30
LCA710xLCA706	8.75	0.89	0.86	206.19	34.36	60.98	7.45
LCA710xLCA763	10.25	0.97	1.01	154.56	29.43	52.66	7.72
LCA710xLCA703	8.76	0.94	0.92	187.37	28.96	53.25	7.66
LCA710xG4	9.20	0.92	0.85	184.50	29.84	49.97	7.95
LCA718xLCA315	10.18	1.10	1.11	136.78	25.92	66.53	7.99
LCA718xLCA706	9.16	1.01	0.92	136.84	28.91	51.85	7.30

Table 3 continued....

Т	ıb	le	3	continue	d

LCA718xLCA763	10.26	1.02	1.13	157.11	26.12	56.23	7.64
LCA718xLCA703	9.04	1.04	1.01	181.23	28.96	64.57	8.30
LCA718xG4	9.38	1.00	1.06	173.52	30.12	66.21	8.03
LCA712xLCA315	9.68	0.94	1.06	148.51	26.39	51.22	7.94
LCA712 xLCA 706	8.53	0.93	0.93	168.94	29.18	56.53	8.32
LCA712 xLCA763	10.66	1.07	1.04	187.29	26.32	48.84	8.48
LCA712 xLCA703	9.45	1.01	1.02	225.56	28.71	56.13	8.33
LCA712xG4	9.54	0.95	0.96	168.92	28.40	53.18	7.78
Crosses Mean	9.53	1.02	1.05	187.89	29.44	60.92	8.31
Checks							
Indam-5	8.95	1.30	1.49	145.44	30.58	80.38	9.51
Tejaswini	8.06	0.82	0.84	178.44	35.98	59.14	7.58
Grand Mean	9.34	1.01	1.03	184.75	29.03	58.43	8.21
C.D. 5%	0.60	0.09	0.11	32.26	5.51	8.97	0.70
S.E.	0.22	0.03	0.04	11.60	1.98	3.22	0.25

Table 4 : Range, heterosis and best heterotic crosses for fifteen characters in chilli.

	Range	of heteros	is (%)	No. of (Based	hybrids l on SH)	Best	heterotic hyb	orids
Characters	MP	BP	SH	+Ve	-Ve	MP	BP	SH
Plant height (cm)	-26.23 to 0.46	-33.21 to -4.47	-19.86 to -0.04	0	22	LCA710 x LCA763	LCA764 x G4	LCA 704 x LCA 315
Plant spread (cm)	-35.79 to -6.47	-41.72 to -8.87	0.56 to 22.69	16	0	LCA718 x LCA703	LCA718 x LCA703	LCA 764 x LCA 706
Number of primary branches	-28.52 to 15.86	-39.57 to 3.88	-5.97 to 32.09	22	0	LCA718 x LCA763	LCA718 x LCA763	LCA764 x LCA763
Number of secondary branches	-30.65 to 16.25	-40.17 to 15.50	-15.14 to 19.92	10	1	LCA710 x LCA763	LCA710 x LCA763	LCA 764 x LCA 703
Days to 50% flowering	-18.81 to 14.39	-19.87 to 7.86	-19.45 to 10.58	1	18	LCA718 x LCA763	LCA718 x LCA763	LCA704 x LCA703
Per cent fruit set	35.95 to 62.97	-37.29 to 47.33	-35.31 to 25.71	5	13	LCA710x LCA315	LCA710x LCA315	LCA 764 x LCA 706
Days to first picking	-18.63 to 18.42	-25.33 to 13.53	-3.42 to 23.95	21	0	LCA710 x LCA706	LCA704 x G4	LCA764 x LCA763
No. of fruits per plant	-25.03 to 70.95	-46.56 to 41.47	-32.70 to 56.40	3	14	LCA 704 x LCA 703	LCA704 x LCA703	LCA 704 x LCA 703
Fruit length (cm)	0.30 to 14.61	-10.02 to 8.08	5.85 to 40.43	29	0	LCA 625 x G4	LCA710 x G4	LCA704 x LCA315
Fruit diameter (cm)	-8.06 to 16.27	-10.53 to 12.94	8.97 to 43.48	30	0	LCA704 x G4	LCA704 x G4	LCA704 x LCA763
Average dry fruit weight (g)	-7.62 to 20.00	-23.04 to 14.58	1.19 to 47.28	25	0	LCA710 x LCA703	LCA710 x LCA703	LCA764 x LCA315
Dry fruit yield per plant (g/plant)	-32.47 to 68.93	-36.35 to 64.77	-23.35 to 55.42	9	8	LCA710 x LCA703	LCA710 x LCA703	LCA704 x LCA 315
Dry fruit recovery (%)	-14.51 to 33.65	-26.69 to 30.52	-27.97 to -1.85	0	27	LCA 625 x G4	LCA 625 x G4	LCA 625 x G4

Table 4 continued...

Table 4 continued	

No. of seeds per fruit	-13.97 to 60.39	-21.55 to 49.79	-17.40 to 34.38	10	7	LCA 625 x G4	LCA 625 x G4	LCA704 x LCA315
Seed weight (g)	-4.52 to 14.34	-11.07 to 12.78	-3.71 to 25.77	17	0	LCA 625 x LCA 703	LCA718 x LCA703	LCA704 x LCA315

MP: Mid Parent, BP: Better Parent and SH: Standard Heterosis.

over Tejaswini. Results are in conformity with the findings of Sharma *et al.* (2013) and Khalil and Hatem (2014) in chilli.

In the pooled analysis, for dry fruit yield per plant 7 hybrids exhibited significant and positive heterobeltiosis and 9 for standard heterosis. A large number of hybrids expressed greater amount of heterotic effects in desired direction for dry fruit yield per plant, plant height, number of primary branches per plant, number of secondary branches per plant and number of fruits per plant. The estimates and magnitude of various heterotic effects were varied with cross combinations and characters. Inconsistent performance of most of the hybrids across the environments for various characters suggested that parental contributions for cross combinations. Different characters were susceptible to environmental fluctuation due to heterosis of the characters changed in different environments due to character x environment interaction.

The crosses which had larger estimates of HB and SH for dry fruit yield, also exerted significant positive heterotic effects for number of fruits per plant and number of primary branches per plant among the yield contributing characters. Therefore, heterotic effects for dry fruit yield were because of direct effect of number of fruits per plant and could be outcome of interaction effects of other yield attributes, like average fruit length and average dry fruit weight. Among developmental characters, early flowering, plant height, number of primary branches and number of secondary branches might have contributed indirectly for heterotic effects of dry fruit yield.

According to Grafius (1959), who had suggested that there could be no separate gene system for yield *per se* as yield is an end product of the multiplicative interactions between its various component characters. Therefore, dry fruit yield per plant could be a result of combinational heterosis. However, positive and negative estimates of heterosis for rest of the characters could have checked each other for exerting heterotic effects. Hence, to obtain maximum advantage of heterosis of each component characters should be determined to identify superior hybrids in respect to yield and its contributing characters.

Among parents, involved in different cross

combinations, the lines LCA 764 and LCA 704 and pollen parents LCA 703 and LCA 315 yielded the best heterotic hybrids. The existence or availability of genetic variability and nature of gene effects impose the selection of breeding methodology. Several hybrids exhibited significant and desirable heterobeltiosis and standard heterosis for various traits studied including dry fruit yield in different environments, which suggest the potentiality of hybrids and scope for heterosis breeding.

A perusal of *per se* performance, heterotic effects and sca effects of hybrids revealed that the hybrids *viz.*, LCA 704 × LCA 315, LCA 764 × LCA 315, LCA 712 × LCA 703, LCA 764 × LCA 763 and LCA 710 × LCA 706 found to be promising for all the approaches and could be further evaluated in yield trials over the locations and seasons before recommending for commercial release. The hybrid seed production work can be made easy with male sterile lines by encashing the advantage of natural out crossing, leading to reduction in the cost of hybrid seeds.

References

- Chaudhary, A., K. Rajesh and S. S. Solankey (2013). Estimation of heterosis for yield and quality components in chilli (*Capsicum annuum* L.). *African Journal of Biotechnology*, **12(47)**: 6605-6610.
- Grafius, J. E. (1959). Heterosis in barley. Agron J., 51: 557-564.
- Hasanuzzaman, M., M. A. Hakim, M. M. Hanafi, S. Abdul, M. M. Islam and A. K. M. Shamsuddin (2013). Study of heterosis in Bangladesh chilli (*Capsicum annuum* L.) landraces. *Agrociencia.*, 47 (7): 683-690.
- Hayes, H. K., F. F. Immer and D. C. Smith (1956). *Methods of Plant Breeding*, McGraw Hill Book Publishing Company, Inc., New Delhi.
- Kaladee, D. (1998). Improvement of Self Pollinated Crop. Department of Agronomy, Faculty of Agriculture, Chiang Mai University. 250 p. (inThai).
- Khalil, M. R. and M. K. Hatem (2014). Study on combining ability and heterosis of yield and its components in pepper (*Capsicum annum*, L.). *Alexandria Journal for Agricultural Research*, **59**(**1**): 61-71.
- Mackey, I. (1976). Genetics and evolutionary principles of heterosis. In: *Heterosis of plant breeding* (Janossy, A. and Lupton, F. G. H. (eds)),. Proc.8th Congr. Eucarpia. Elsevier, p. 17-33.

- Mendes, M. M., R. Rosana, S. A. G. Leandro, P. S. Claudia, O. Herica and H. S. Marilene (2014). Gene effect and heterosis in *Capsicum baccatum* var. *pendulum. Ciencia Rural*, 44(6):1031-1036.
- Payakhapaab, S., D. Boonyakiat and M. Nikornpun (2012). Evaluation of heterosis and combining ability of yield components in chillies. *Journal of Agricultural Sciences*, 4(11):154-161.
- Prasath, D. and V. Ponnuswami (2008). Heterosis and combining ability for morphological, yield and quality characters in

paprika type chilli hybrids. *Indian Journal of Horticulture*, **65(4)**: 441-445.

- Sharma, V. K., P. Shailaja and B. B. Sharma (2013). Heterosis studies for earliness, fruit yield and yield attributing traits in bell pepper. *African Journal of Agricultural Research*, 8(29): 4088-4098.
- Turner, J. M. (1953). A Study of heterosis in upland cotton II. Combining ability and inbreeding effects. Agronomy Journal, 45: 487-490.